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Abstract—This paper explores the application of Principal
Component Analysis (PCA) in risk analysis and portfolio
management within the IDX30 stock index. PCA effectively
identifies risk factors and quantifies their impact on
individual stocks, offering a detailed understanding of
systematic and idiosyncratic risks. By analyzing stock
loadings and constructing portfolios based on principal
components, PCA demonstrates its value in creating
diversified portfolios and managing risk exposure. The study
evaluates various portfolio strategies, including those based
on top principal components, cumulative variance
thresholds, and custom weighting schemes. Results reveal
that while PCA is a critical tool for assessing risks and
uncovering diversification opportunities, it does not
guarantee superior performance. The paper emphasizes the
importance of complementing PCA insights with economic
and strategic considerations to achieve tailored investment
goals, balancing risk and return.

Keywords—IDX30 stock index, Portfolio management,
Principal component analysis (PCA), Risk analysis

 I. INTRODUCTION

In modern finance, the quest for effective risk analysis
and optimal portfolio management remains a sustaining
endeavor. Analyzing large datasets, such as stock indices
like Indonesia’s IDX30, presents challenges due to high
asset correlations, which can obscure critical insights.
Whereas Markowitz’s mean-variance theory paves the
foundation of modern portfolio theory, its practical
application is hindered by its high sensitivity to input
assumptions, often leading to suboptimal diversification.
The modern paradigm of risk-based allocation strategy,
which constructs a portfolio based solely on the
variance-covariance of assets, such as minimum variance,
most diversified portfolio, risk parity, and diversified risk
parity, neglects to effectively handle datasets with a large
number of highly correlated assets [1].

Principal Component Analysis (PCA) offers a robust
mathematical approach to tackle such challenges. By
transforming high-dimensional data into a smaller set of
uncorrelated components, PCA captures the most
significant sources of variance within the dataset,

highlighting vital factors for smarter investment decisions
[2]. The IDX30 index comprises the top 30 stocks on the
Indonesia Stock Exchange, selected based on relatively
large market capitalization, high liquidity, and strong
fundamentals [3]. Its composition reflects various sectors,
making it an ideal candidate for risk analysis and portfolio
management using PCA.

This paper aims to explore the application of PCA on
the IDX30 stock index to uncover key risk factors and
optimize stock portfolio construction. By leveraging
PCA’s capability to reduce dimensionality and isolate
critical sources of variance, the study provides actionable
insights for risk analysis and portfolio management. The
results are expected to contribute to more effective
investment strategies, particularly in emerging markets.

 II. LITERATURE REVIEW

A. Variance and Covariance
Variance and covariance are two fundamental concepts

in statistics that measure different aspects of data
distribution and relationships between variables. Both
concepts will be extensively explored throughout this
study, as they form the mathematical foundation for
techniques such as PCA.

1) Variance: Quantifies how much a set of data points
deviate from their mean value. It provides a measure of
spread or dispersion within a single dataset. In the context
of PCA, higher variance indicates that a component
contains more information about the dataset. Variance ( )σ
is calculated using the formula:

(1)σ2 =  1
𝑁

𝑖=1

𝑁

∑ (𝑥
𝑖

− µ)2

where N is the number of data points, xi represents each
data point, and μ is the mean of the data points.

2) Covariance: Measures how two random variables
change together, indicating the direction of the linear
relationship between the variables. The covariance of two
variables X and Y is calculated using the formula:

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

mailto:13523013@std.stei.itb.ac.id
mailto:omgitsnathaniels@gmail.com


(2)𝐶𝑜𝑣(𝑋, 𝑌) = 1
𝑁

𝑖=1
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𝑖
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𝑖
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where N is the number of the paired data points, xi and yi

are individual sample points, and are the means of X𝑥 𝑦
and Y, respectively. Covariance can be held in a matrix
called the covariance matrix [4].

B. Eigenvalues and Eigenvectors
1) Definition: Eigenvalues are scalar values that

indicate how much an eigenvector is stretched or
compressed during a transformation. Formally, if A is a
square matrix and v is an eigenvector, then the
relationship can be expressed as follows:

(3)𝐴𝑣 =  λ𝑣

Eigenvectors are non-zero vectors that, when
transformed by a matrix, result in a vector that is a scalar
multiple of the original vector, meaning the direction of
the eigenvector remains unchanged (or reversed if the
eigenvalue is negative) after the transformation [5], [6].

Fig. 1. Eigenvalues and eigenvectors visualization
[Source: https://en.wikipedia.org/wiki/File:Eigenvalue_equation.svg,

Accessed: Dec. 29, 2024.]

2) Eigenvalues and Eigenvectors in PCA: Eigenvalues
and eigenvectors are often utilized in the domain of
machine learning, particularly in techniques like PCA,
where they play pivotal roles in achieving dimensionality
reduction.

Fig. 2. Visualization of eigenvectors and eigenvalues as PC [Source:
https://medium.com/intro-to-artificial-intelligence/principal-component-

analysis-pca-cd282196b7d5, Accessed: Dec. 29, 2024.]

Eigenvalues quantify the amount of variance captured
by each principal component (PC). Larger eigenvalues
indicate a greater portion of the data’s variance of the
corresponding eigenvector. Eigenvectors represent the
directions of these principal components in the

transformed space. Each eigenvector defines a new axis,
aligning with the directions of maximum variance. Thus,
eigenvectors can be visually interpreted as vectors that
point in the direction of maximum variance. By sorting
eigenvalues in a descending order, the most informative
eigenvectors can be prioritized, allowing the reduction of
noisy dimensions in the dataset [6].

3) Calculation: Eigenvalues and the corresponding
eigenvectors of a matrix A can be found by following
these simple steps. In order to find the eigenvalues,
compute the characteristic polynomial which is obtained
from the determinant equation:

(4)𝑑𝑒𝑡(𝐴 − λ𝐼) =  0

Eigenvectors then can be calculated by substituting
each eigenvalue (λ) back into the equation:

(5) (𝐴 − λ𝐼)𝑣 =  0

To note, not all matrices A have corresponding
eigenvalues and eigenvectors, as these exist only if A is a
square matrix and satisfies the characteristic equation as
shown in (4) [5].

C. Singular Value Decomposition (SVD)
1) Definition: Singular Value Decomposition (SVD)

decomposes a matrix A into three other matrices:

(6)𝐴 =  𝑈 𝑆 𝑉𝑇

where U contains left singular vectors (ui), S or Σ is a
diagonal matrix of singular values (σi), and VT contains
right singular vectors (vi).

The matrix AAT and ATA are very notable since these
matrices are symmetrical, square, positive semidefinite,
have the same positive eigenvalues, and both have the
same rank r as A. Eigenvectors for AAT are named as ui

and ATA as vi. Left singular vectors (ui) can then be
concatenated into U and right singular vectors (vi) into V,
forming orthogonal matrices with each eigenvector being
orthonormal. Since eigenvectors can be differently
ordered to produce U and V, the eigenvectors are ordered
such that vectors higher eigenvalues come before those
with smaller values. In comparison to
eigendecomposition, SVD works on both square and
non-square matrices [7], [8].

Fig. 4. Standardization of the eigenvectors order of U and V
[Source:https://jonathan-hui.medium.com/machine-learning-singular-val
ue-decomposition-svd-principal-component-analysis-pca-1d45e885e49,

Accessed: Dec. 29, 2024.]

The SVD decomposition can also be recognized as a
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series of outer products of ui and vi :

(7)𝐴 =  σ
1
𝑢

1
𝑣

1
𝑇 +  ... +  σ

𝑟
𝑢

𝑟
𝑣

𝑟
𝑇 

2) SVD Connection to PCA: The reduced form of SVD
decomposition as shown in (7) is crucial to understand the
components of A, offering a powerful method to
decompose an m x n matrix of entangled data into r
components. Since ui and vi are unit vectors, we can
ignore terms uiσivi

T with very small singular values (σi). If
data is highly correlated, many singular values (σi) can be
expected to be small and ignored [8].

Just like PCA, SVD can be used for dimensionality
reduction by selecting a few singular values and their
corresponding vectors, effectively capturing the most
significant features (with highest variance) of the data
while reducing noise [8]. But in practical applications, the
right singular vectors (V) correspond to the principal
components derived in PCA.

Fig. 5. SVD decomposition and its reduced form
[Source:https://jonathan-hui.medium.com/machine-learning-singular-val
ue-decomposition-svd-principal-component-analysis-pca-1d45e885e49,

Accessed: Dec. 29, 2024.]

D. Principal Component Analysis (PCA)
1) Definition: Principal Component Analysis (PCA) is

a statistical technique primarily used for dimensionality
reduction while preserving as much variance
(information) as possible derived from the dataset. This
method is particularly useful when dealing with
high-dimensional data, allowing for easier analysis and
visualization.

PCA projects m-dimensional input features onto a
k-dimensional space defined by k principal components.
representing latent factors. PCA reorients the axes of a
dataset to align with directions of maximum variance. The
new coordinate system lines up with the eigenvectors,
making correlations and patterns more apparent [6].

Fig. 6. Principle components reorientation for maximum variance
[Source:https://jonathan-hui.medium.com/machine-learning-singular-val
ue-decomposition-svd-principal-component-analysis-pca-1d45e885e49,

Accessed: Dec. 29, 2024.]

2) Computation Methods: PCA can be computed
through various methods. Traditionally, it is performed

through Eigenvalue Decomposition (EVD) on the sample
variance matrix, providing a method based on EVD.
Alternatively, SVD is another approach that has
demonstrated advantages. SVD is particularly efficient for
high-dimensional datasets, offering greater computational
speed, numerical speed, and stability [9]. Mature machine
learning libraries, such as Scikit-learn, also implement the
SVD method for their PCA computation, as outlined in
their documentation [10].

Utilizing the SVD method, PCA can be computed as
follows:

a) Center the Data: Subtract the mean of each feature
from the dataset to ensure the data is zero-centered:

(8)𝑍 =  𝑋 −  µ

where Z is the centered data matrix, X is the original data
matrix, and μ is the mean vector of features.

b) Standardization (Optional): If the features have
varying units or scales, standardize them by dividing
each feature by their standard deviations (σ):

(9)𝑍
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑

 =  𝑍
σ

c) Compute SVD: Apply SVD to the centered (and
possibly standardized) data matrix Z:

(10)𝑍 =  𝑈 𝑆 𝑉𝑇 

d) Calculate Variance Explained (Optional): Divide
the square of each singular value (derived from the
diagonal of S) by the sum of all squared singular values
to determine the proportion of variance explained by
each principal component:

(11)𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑃𝐶
𝑖

=
σ

𝑖
2

∑σ
𝑗
2

e) Extract Principal Components: Choose the top k
singular values and corresponding columns of VT or
rows of V (principal components) based on explained
variance.

f) Transform Data: Project the original data onto the
reduced principal component:

(12)𝑍
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

=  𝑍 𝑉
𝑘

𝑇

where Vk
T consists of the first k columns of VT,

corresponding to the top k principal components.

E. Risk Analysis Using PCA
Stocks are commonly influenced by three main types of

risks: systematic, sectoral, and idiosyncratic risks.
Systematic risk refers to market-wide factors, such as
economic recessions, geopolitical events, or even

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491
https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491
https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491
https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491


macroeconomics changes like fluctuations in interest
rates. Systematic risk affects all stocks in varying degrees
and cannot be diversified away. Sectoral risk is specific to
particular industries or sectors, such as changes in
commodity prices affecting energy stocks. Idiosyncratic
risk, on the other hand, is unique to individual companies,
such as management decisions, product success or
failures, or even lawsuits. Unlike systematic risk,
idiosyncratic risk can typically be reduced and diversified
away.

PCA offers valuable insights into which stocks are most
exposed to systematic risks by analyzing each stock’s
contribution to dominant principal components. Stocks
with high loading values in the first principal component
(PC1) tend to have a significant impact on overall market
risk. On the other hand, subsequent principal components
highlight diversification opportunities by identifying
assets with weaker correlations to the broader market.

Highly correlated datasets often require only one or two
PCs to capture a large portion of the total variation.
Conversely, if the data is less correlated or only correlated
within certain subgroups, more PCs may be necessary.
Examining the variance explained by successive PCs
provides a way to estimate the effective dimensionality of
the dataset.

The explained variance of each component also allows
investors to assess how much of the total market risk is
attributed to systematic versus idiosyncratic factors. For
example, a sharp decline in explained variance after PC1
indicates that most of the risk is market-driven, while a
gradual decline suggests a combination of systematic and
specific (sectoral or idiosyncratic) risks.

Whereas this reduction in dimensionality is helpful, it
does not provide an economic interpretation of the PCs.
Specifically, it remains unclear whether the PCs are
influenced by all variables in the dataset or just a subset,
requiring further investigation to assign meaningful
economic interpretations to the components [11].

F. Portfolio Management Using PCA
PCA offers a powerful framework for optimizing

portfolio management and constructing eigenportfolios.
One key application of PCA in portfolio optimization is
risk-return optimization. By allocating portfolio weights
based on the variance contribution of principal
components, investors can enhance risk-adjusted returns.
For instance, assigning lower weights to components with
high exposure to systematic risk, such as PC1, and
prioritizing diversifying components like PC2 and PC3,
allows for a greater stability and more favorable
risk-return profile.

Another critical application of PCA is weight
optimization. Using the loadings of each stock in
principal components, investors can determine
factor-based weights that align with expected return and
desired risk exposure. Stocks exhibiting higher sensitivity
to beneficial principal components, such as those driving
long term growth or sectoral outperformance, can be

assigned greater weights. Additionally, traditional
techniques, such as mean-variance optimization (MVO)
and Sharpe ratio calculation can be combined with PCA
by incorporating expected returns derived from principal
components.

It is clear that PCA supports diversification by
identifying uncorrelated components within the dataset.
Picking stocks that load significantly on different
principal components ensures reduced exposure to
specific risks associated with correlated assets. This
enhances portfolio resilience and mitigates the impact of
adverse events affecting particular sectors or market
trends. However, PCA is less of a suitable method for
determining how many individual stocks to retain in a
portfolio. This limitation arises from PCA’s reliance on
the covariance matrix [12].

To tackle challenges associated with noisy data in the
covariance matrix and build a more robust
eigenportfolios, techniques such as spectral cut-off and
spectral selection have been introduced. Spectral cut-off
involves discarding smaller eigenvalues, retaining only
significant eigenvalues and their corresponding
eigenvectors for portfolio construction. Spectral selection,
on the other hand, offers a more precise approach by
retaining eigenvalues and eigenvectors that hold
economic or strategic importance. For instance, investors
might prioritize components associated with systematic or
sectoral risks, discarding those linked to idiosyncratic
noise [13].

G. IDX30 Stock Index
The IDX30 stock index, a key benchmark on the

Indonesia Stock Exchange (IDX), comprises the top 30
stocks selected based on market capitalization, liquidity,
and fundamental performance from the LQ45 stock index.
It serves as a vital indicator towards the Indonesian
market’s health, reflecting the performances of its most
prominent companies. With representation across diverse
sectors such as finance, consumer goods, energy, and
telecommunications, the IDX30 offers a comprehensive
view of Indonesia’s economic landscape [3].

Fig. 7. Sector weights and point index of IDX30 per November 2024
[Source: IDX Index Fact Sheet IDX30 November 2024, Accessed: Dec.

29, 2024]

As an index in an emerging market, the IDX30 reflects
unique economic dynamics. These characteristics pose
both challenges, such as difficulty in uncovering
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independent risk factors, and opportunities, such as
testing advanced techniques like PCA to uncover vital
risk factors. The IDX30’s manageable size and relevance
to investors in both emerging and developed markets
further justify its selection as the dataset for this study.

 III. IMPLEMENTATION

 A. Programming Language and Supporting Tools
For the implementation of risk analysis and portfolio

management using PCA, Python is used as the
programming language, leveraging its extensive
ecosystem of supporting libraries. These libraries
streamline the process of data collection, processing,
analysis, and visualization:

import yfinance as yf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

The yfinance library is used for fetching historical stock
price data directly from Yahoo Finance, simplifying the
process of downloading and organizing market data for
multiple stocks. The numpy library is used for more
efficient numerical computations, matrix operations, and
statistical processing, including the computation of SVD.
The pandas library is used for data manipulation,
cleaning, and organization of stock price and return data.
The matplotlib library is used to create comprehensive
visualizations of key results, enhancing the
interpretability of data.

 B. Data Collection and Preprocessing
The PCA process will be applied to the daily returns of

IDX30 stocks. The historical price data spans from
November 2024 to the end of December 2024, aligning
with the IDX30 stock composition update in November
2024. However, the timeframe of the historical price data
can vary depending on the goals of the analysis. For
instance, the November to December 2024 data
emphasizes the most recent market dynamics and stock
relationships, providing insights into the current risk and
diversification landscape. On the other hand, a longer
backtracking period, such as January 2024 to December
2024, may capture broader market trends and
performance over time, offering a more comprehensive
perspective on risk and portfolio behavior.

The fetched historical price data is then converted into
daily returns and cleaned by removing any incomplete
price data to ensure consistency across all stocks and
dates:

idx30_tickers = [
"BBCA.JK", "BBRI.JK", "BMRI.JK",
"TLKM.JK", "ASII.JK", "BBNI.JK",
"ICBP.JK", "AMRT.JK", "UNTR.JK",

"GOTO.JK", "BRPT.JK", "CPIN.JK",
"ADRO.JK", "UNVR.JK", "INDF.JK",
"KLBF.JK", "MBMA.JK", "PGEO.JK",
"MDKA.JK", "PGAS.JK", "INKP.JK",
"INCO.JK", "ANTM.JK", "ARTO.JK",
"PTBA.JK", "MEDC.JK", "MAPI.JK",
"SMGR.JK", "AKRA.JK", "ACES.JK"

]

data = yf.download(idx30_tickers,
start="2024-11-1", end="2024-12-30")
prices = data["Close"].dropna()
returns = prices.pct_change().dropna()

 C. Principal Component Analysis Implementation
As the central focus of this analysis, PCA is

implemented through a function that utilizes the SVD
method. This function not only computes and returns the
principal components, but also outputs the explained
variance ratio, singular values, and transformed data,
providing supporting data for further analyses:

def svdPCA(X, n_components=None):
X_mean = np.mean(X, axis=0)
X_centered = X - X_mean
U, S, Vt = np.linalg.svd(X_centered,

full_matrices=False)

if n_components is None:
n_components = min(X.shape)

components = Vt[:n_components]
for i in range(components.shape[0]):

max_abs_idx =
np.argmax(np.abs(components[i]))

if components[i, max_abs_idx] <
0:

components[i] *= -1
U[:, i] *= -1

singular_values = S[:n_components]
explained_variance =

(S[:n_components] ** 2) / (X.shape[0] -
1)

total_var = (S ** 2).sum() /
(X.shape[0] - 1)

explained_variance_ratio =
explained_variance / total_var

transformed_X = np.dot(X_centered,
components.T)

return transformed_X, components,
explained_variance_ratio, singular_values

 D. Principal Components Risk Analysis
To analyze risks through principal components, PCA

must first be applied to the historical stock returns data.
The historical stock returns serve as an essential input for
PCA, as they capture day-to-day variations in stock
prices, reflecting the underlying market dynamics and
volatility. By utilizing the all relevant informations
derived from the PCA computation, further analyses, such
as principal components stock loadings calculation, can

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025



be performed:

# Perform PCA on historical returns data
transformed_returns, components,
explained_variance_ratio, singular_values
= svdPCA(returns.values)

 E. Principal Components Portfolio Management
The principal components portfolio management is

done by constructing and analyzing portfolios using
weights derived from principal components to evaluate
risk-return dynamics effectively. These varying portfolio
compositions include the PC1 portfolio (reflects
systematic risk), Top 3 PC, Top 5 PC, and Top 10 PC
portfolios (combines multiple components to incorporate
sector-specific and idiosyncratic risks), and the 95%
Variance portfolio (heavily diversifies by including all
components that explain 95% of the variance),
Additionally, Equal Weight portfolio, allocating equal
weights to all stocks, is included as a benchmark and
Custom Weight portfolio, allocating real IDX30 stocks
weight, is included to reflect real-world considerations.
Portfolio returns are calculated by applying respective
weights to stock returns and cumulative returns are
derived to envision long-term portfolio performance:

# Number of components explaining 95%
variance
num_components =
np.argmax(cumulative_variance >= 0.95) +
1

# Portfolio Weights Construction
num_components_95 =
np.argmax(np.cumsum(explained_variance_ra
tio) >= 0.95) + 1
portfolio_weights = {

'PC1': components[0] /
np.sum(np.abs(components[0])),

'Top_3_PC': np.sum(components[:3],
axis=0) /
np.sum(np.abs(np.sum(components[:3],
axis=0))),

'Top_5_PC': np.sum(components[:5],
axis=0) /
np.sum(np.abs(np.sum(components[:5],
axis=0))),

'Top_10_PC': np.sum(components[:10],
axis=0) /
np.sum(np.abs(np.sum(components[:10],
axis=0))),

'95_Variance':
np.sum(components[:num_components_95],
axis=0) /
np.sum(np.abs(np.sum(components[:num_comp
onents_95], axis=0))),

'Equal_Weight':
np.ones(len(idx30_tickers)) /
len(idx30_tickers),

'Custom_Weighted':
np.array([custom_portfolio_weights[ticker
] for ticker in idx30_tickers])

}

# Portfolio Returns Calculation
portfolio_returns = {}
for name, weights in
portfolio_weights.items():

portfolio_returns[name] =
np.dot(returns.values, weights)

# Convert Portfolio Returns to Cumulative
Returns
cumulative_returns = {name: np.cumprod(1
+ ret) for name, ret in
portfolio_returns.items()}
cumulative_returns = {name: cum_ret - 1
for name, cum_ret in
cumulative_returns.items()}

 IV. RESULTS AND DISCUSSION

 A. The IDX30 Stock Index Characteristics
Using the historical data following the most recent

update of the IDX30 composition, the analysis of the
historical data following the latest IDX30 composition
reallocation reveals that 16 principal components (PCs)
are required to retain 95% of the variance in the dataset.
This relatively high number of PCs indicates that the
IDX30 stock index exhibits a complex structure with
significant variability distributed across multiple
dimensions.

Fig. 8. Cumulative explained variance of the IDX30 returns data
[Source: Author’s calculation using PCA on IDX30 historical returns]

The necessity for 16 PCs to explain 95% of the
variance can be attributed to the multi-sectoral nature of
the IDX30. Stocks in different sectors tend to exhibit
unique patterns of returns driven by distinct economic
factors, such as interest rates, commodity prices, or
consumer demand. For example, the financial sector may
respond to monetary policy shifts, whereas the energy
sector is more influenced by global oil prices. This
heterogeneity increases the dimensionality of the dataset,
as no single or small group of PCs can capture the diverse
factors affecting all sectors. The implication is that risk
analysis and portfolio management strategies must
account for this complexity by considering contributions
from multiple PCs, rather than focusing solely on the
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dominant ones

 B. Risk Analysis
By analyzing the stock loadings of each principal

component (PC), the contributions of the IDX30 stocks
towards various factors can be understood.

Fig. 9. IDX30 stock loadings for the first principal component (PC1)
[Source: Author’s calculation using stocks coefficients of the

corresponding principal component]

Using the PC1 stock loadings data illustrated in Fig. 9,
the stocks are categorized based on their loadings levels,
as detailed in Table I. Column (a) represents the stock
loading categories, whereas column (b) lists the
corresponding tickers within each category.

TABLE I
 LIST OF STOCK TICKERS GROUPED BY THEIR FIRST PRINCIPAL

COMPONENT LOADINGS

Stock Loadingsa Stock Tickersb

High-loading
(> 20%)

BBRI.JK, BBNI.JK, BRPT.JK,
CPIN.JK, INCO.JK

Moderate-loading
(10-20%)

TLKM.JK, ASII.JK, ICBP.JK,
AMRT.JK, GOTO.KJ, ADRO.JK,
UNVR.JK, MDKA.JK, INKP.JK,
ANTM.JK, ARTO.JK,
MEDC.JK, MAPI.JK, AKRA.JK,
ACES.JK

Low-loading
(< 10%)

BBCA.JK, BMRI.JK, INDF.JK,
KLBF.JK, MBMA.JK, PGEO.JK,
PGAS.JK, PTBA.JK, SMGR.JK

The first principal component (PC1) captures
systematic market-wide risk, reflected in the significant
loadings of most stocks. Stocks with high PC1 loadings
are more exposed to market-driven risks, making them
key contributors to portfolio variance and performance,
especially during economic turbulence. Investors exposed
to these high-loading stocks should be aware of their
higher influence on the portfolio’s total risk.

In contrast, stocks with moderate or low loadings are
less sensitive to market-wide factors, often reflecting
idiosyncratic or sector-specific risks. These lower-loading
stocks can enhance portfolio diversification. A balanced
portfolio combining both high and low PC1 loadings
leverages their complementary characteristics for stability
and diversification. To note, a negative stock loadings
signifies that the stock moves inversely to the direction of
the principal component.

Fig. 10. IDX30 stock loadings for principal component 2 (PC2)
[Source: Author’s calculation using stocks coefficients of the

corresponding principal component]

Examining PC2 and subsequent components (e.g., PC3
and beyond) reveals increasingly nuanced and orthogonal
aspects of variance in the IDX30. While PC1 highlights
overall market trends, subsequent components capture
sectoral contrasts or thematic behaviors, reflecting
interactions among specific industry groups. Subsequent
components may offer granular insights into the dataset’s
structure and unique dimensions of risk and opportunity.

For instance, as illustrated in Fig. 10, PC2 loadings
vary significantly, with BBRI.JK emerging as a dominant
influence. Figuring out the interpretation or the factors
related to PC2 may require further extensive analysis, but
it could still offer insights into sectoral dynamics or
external influences.

 C. Portfolio Management
Utilizing principal component stock loadings, portfolio

stock weights are calculated. The stock weights in a
portfolio can vary significantly depending on the method
of portfolio construction as illustrated in Fig. 11 and Fig.
12.

For instance, portfolios based on the first principal
component (PC1) tend to assign higher weights to stocks
with greater exposure to market-wide systematic risks, as
indicated by their loadings on PC1. Conversely, portfolios
constructed using multiple principal components, such as
the 95% Variance portfolio, covering 95% of the variance,
distribute weights more broadly, incorporating both
systematic and idiosyncratic factors.
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Fig. 11. Stock weights of the PC1 Portfolio [Source: Author’s
calculation using stock loadings of each principal component]

Fig. 12. Stock weights of the 95 Variance Portfolio [Source: Author’s
calculation using stock loadings of each principal component]

Furthermore, comparing portfolio performances allows
for a clear evaluation about the impact of each portfolio
weighting strategy. This analysis is essential for
identifying the effectiveness of diversification and risk
mitigation techniques, helping investors choose a
portfolio that aligns with their objectives.

Fig. 13. Cumulative return of constructed portfolios [Source: Author’s
calculation using each portfolio’s stock weight and historical data]

To enhance the accuracy of backtesting, this analysis
employs a data span from January to December 2024,
allowing for a comprehensive evaluation of cumulative

returns among the constructed portfolios. The use of this
extended time frame ensures that the performance trends
are reflective of varying market conditions over the year.

To evaluate portfolio performance and cumulative
returns effectively, standard deviations are calculated.
Risk-adjusted returns are then derived by dividing the
cumulative returns by their respective standard deviations.
All performance metrics for the portfolios are presented in
Table II, with column (a) displaying cumulative returns,
column (b) detailing standard deviations, and column (c)
outlining risk-adjusted returns.

TABLE II
 PERFORMANCE OF EACH CONSTRUCTED PORTFOLIO

Portfolio Cumulative
Returna

Standard
Deviationb

Risk-Adjusted
Returnc

PC1 -9% 0.0115 -7.92

Top 3 PC -10% 0.0101 -10.08

Top 5 PC 2% 0.0089 1.86

Top 10 PC 1% 0.0086 1.00

95%
Variance

2% 0.0059 3.27

Equal
Weight

-6% 0.0094 -6.39

Custom
Weight

6% 0.0105 5.93

As illustrated in Fig. 13 and Table II, portfolio
performance varies significantly, offering valuable
insights. The PC1 portfolio, heavily influenced by
systematic market-wide risks, underperformed with a
cumulative return of -9% and a risk-adjusted return of
-7.92, reflecting its vulnerability to market downturns due
to concentrated exposure to broader trends. Similarly, the
Top 3 PC portfolio yielded a cumulative return of -10%
and a risk-adjusted return of -10.08, showing that relying
solely on the first few principal components can result in
overexposure to dominant risk factors and does not
guarantee better performance.

In contrast, portfolios incorporating a broader range of
components, such as the Top 5 PC and 95% Variance
portfolios, achieved positive cumulative returns of 2%
each, with risk-adjusted returns of 1.86 and 3.27,
respectively. These results highlight the advantage of
diversifying across additional principal components,
effectively mitigating systematic risks and capturing more
nuanced aspects of variance.

The Custom Weight portfolio, designed with predefined
stock weightings to favor specific investment priorities,
outperformed all others with a cumulative return of 6%
and a risk-adjusted return of 5.93, showcasing the benefits
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of strategic weighting tailored to growth opportunities or
undervalued stocks.

Although PCA does not ensure superior performance, it
remains a critical tool for risk management and
diversification, as evidenced by the decreasing portfolio
standard deviation with increasing diversification (see
column (b) of Table II). Investors should use PCA to
identify and manage risks but complement it with custom
weighting strategies to enhance returns. For instance,
more aggressive investors may prefer the Custom Weight
portfolio for its superior gain potential, while risk-averse
investors may choose the 95% Variance portfolio, which
balances modest returns with lower volatility.

 V. CONCLUSION

PCA proves to be a powerful tool for uncovering risk
factors and uncovering the stocks most impacted among
them. Its ability to analyze asset weights within a
portfolio provides valuable insights into risk distribution
and portfolio composition. By leveraging PCA, investors
can effectively construct diversified portfolios with
reduced risk exposure. However, whereas PCA excels in
identifying risks and diversification opportunities, it does
not guarantee superior performance. To achieve optimal
results, PCA should be paired with economic or strategic
considerations, ensuring that portfolio decisions align
with broader investment objectives and market
conditions.
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 VII. APPENDIX

The complete source code used for the analysis,
including data preprocessing, PCA implementation, and
portfolio management computations, is available on
GitHub. Access the code repository here: GitHub
Repository Link.

 REFERENCES

[1] L. Yang. “An Application of Principal Component Analysis to
Stock Portfolio Management,” Master of Commerce in Finance,
Department of Economics and Finance University of Canterbury.
Accessed: Dec. 28, 2024. [Online]. Available:
https://ir.canterbury.ac.nz/items/1bced3e5-abd7-4277-9c97-65c90c
215298.

[2] J.R, “Principal Component Analysis for Portfolio Optimization,”
MarketBulls, Jun. 19, 2024.
https://market-bulls.com/principal-component-analysis-portfolio-o
ptimization/ (accessed Dec. 29, 2024).

[3] Indonesia Stock Exchange, “IDX Index Fact Sheet IDX30,” Nov.
2024.https://www.idx.co.id/id/data-pasar/laporan-statistik/fact-shee
t-index/ (accessed: Dec. 29, 2024).

[4] verifiedmetrics, “Covariance vs. Variance: Top differences you
should know | Verified Metrics,” www.verifiedmetrics.com.
https://www.verifiedmetrics.com/blog/covariance-vs-variance-top-
differences-you-should-know (accessed Dec. 29, 2024).

[5] R. Munir. “Nilai Eigen dan Vektor Eigen (Bagian 1)”, 2023.
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20
23-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.p
df (accessed: Dec. 29, 2024).

[6] Dataheadhunters, “Dissecting Eigenvectors: Their Role in
Dimensionality Reduction,” Dataheadhunters.com, Jan. 07, 2024.
https://dataheadhunters.com/academy/dissecting-eigenvectors-their
-role-in-dimensionality-reduction/ (accessed Dec. 29, 2024).

[7] R. Munir. “Singular Value Decomposition (SVD) (Bagian 1)”,
2023.https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeom
etri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2
023.pdf (accessed: Dec. 29, 2024).

[8] J. Hui, “Machine Learning — Singular Value Decomposition
(SVD) & Principal Component Analysis (PCA),” Medium, Feb.
08,2020.https://jonathan-hui.medium.com/machine-learning-singul
ar-value-decomposition-svd-principal-component-analysis-pca-1d4
5e885e491 (accessed Dec. 29, 2024).

[9] K. He, “SVD in Machine Learning: PCA,” Medium, May 18, 2020.
https://towardsdatascience.com/svd-in-machine-learning-pca-f25cf
9b837ae (accessed Dec. 29, 2024).

[10] scikit-learn, “PCA,” scikit-learn, 2024.
https://scikit-learn.org/1.5/modules/generated/sklearn.decompositio
n.PCA.html (accessed Dec. 29, 2024).

[11] Mico Loretan, “Generating market risk scenarios using principal
components analysis: Methodological and practical
considerations,” Research Gate, Jan. 01, 1997.
https://www.researchgate.net/publication/253200764_Generating_
market_risk_scenarios_using_principal_components_analysis_Met
hodological_and_practical_considerations (accessed Dec. 30,
2024).

[12] G. Pasini, “PRINCIPAL COMPONENT ANALYSIS FOR STOCK
PORTFOLIO MANAGEMENT,” International Journal of Pure
and Apllied Mathematics, vol. 115, no. 1, Jun. 2017, doi:
https://doi.org/10.12732/ijpam.v115i1.12.

[13] D. Guo, P. Boyle, C. Weng, and T. Wirjanto, “Eigen Portfolio
Selection: A Robust Approach to Sharpe Ratio Maximization,”
Nov. 2017. Accessed: Dec. 30, 2024. [Online]. Available:
https://business.unl.edu/academic-programs/departments/finance/a
ctuarial-science/seminar-series/documents/WengPaper.pdf.

 STATEMENT

I hereby declare that this paper is my own work, not a
paraphrase or translation of someone else’s paper, and not

plagiarism.

Bandung, 1 January 2025

Nathaniel Jonathan Rusli
13523013

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

https://github.com/0xNathaniel/IDX30-PCA-Analysis
https://github.com/0xNathaniel/IDX30-PCA-Analysis
https://ir.canterbury.ac.nz/items/1bced3e5-abd7-4277-9c97-65c90c215298
https://ir.canterbury.ac.nz/items/1bced3e5-abd7-4277-9c97-65c90c215298
https://market-bulls.com/principal-component-analysis-portfolio-optimization/
https://market-bulls.com/principal-component-analysis-portfolio-optimization/
https://www.idx.co.id/id/data-pasar/laporan-statistik/fact-sheet-index/
https://www.idx.co.id/id/data-pasar/laporan-statistik/fact-sheet-index/
https://www.verifiedmetrics.com/blog/covariance-vs-variance-top-differences-you-should-know
https://www.verifiedmetrics.com/blog/covariance-vs-variance-top-differences-you-should-know
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://dataheadhunters.com/academy/dissecting-eigenvectors-their-role-in-dimensionality-reduction/
https://dataheadhunters.com/academy/dissecting-eigenvectors-their-role-in-dimensionality-reduction/
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-21-Singular-value-decomposition-Bagian1-2023.pdf
https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491
https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491
https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491
https://towardsdatascience.com/svd-in-machine-learning-pca-f25cf9b837ae
https://towardsdatascience.com/svd-in-machine-learning-pca-f25cf9b837ae
https://scikit-learn.org/1.5/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/1.5/modules/generated/sklearn.decomposition.PCA.html
https://www.researchgate.net/publication/253200764_Generating_market_risk_scenarios_using_principal_components_analysis_Methodological_and_practical_considerations
https://www.researchgate.net/publication/253200764_Generating_market_risk_scenarios_using_principal_components_analysis_Methodological_and_practical_considerations
https://www.researchgate.net/publication/253200764_Generating_market_risk_scenarios_using_principal_components_analysis_Methodological_and_practical_considerations
https://doi.org/10.12732/ijpam.v115i1.12
https://business.unl.edu/academic-programs/departments/finance/actuarial-science/seminar-series/documents/WengPaper.pdf
https://business.unl.edu/academic-programs/departments/finance/actuarial-science/seminar-series/documents/WengPaper.pdf

